+7 (499) 938-69-47  Москва

+7 (812) 467-45-73  Санкт-Петербург

8 (800) 511-49-68  Остальные регионы

Бесплатная консультация с юристом!

Как найти область определения выражения под корнем

Область допустимых значений (ОДЗ) – это все значения переменной, при которых не нарушаются правила математики.

— если в выражении (frac) значение переменной будет равно 1, нарушается правило: на ноль делить нельзя. Поэтому здесь (x) не может быть единицей и ОДЗ записывается так: (xneq1);

— если в выражении (sqrt) значение переменной равно (0), нарушается правило: подкоренное выражение не должно быть отрицательно. Значит, здесь (x) не может быть (0), а также (1, -3, -52,7) и т.д. То есть, икс должен быть больше или равен 2 и ОДЗ будет: (xgeq2);

— а вот в выражение (4x+1) мы можем подставить любое число вместо икса, и никакие правила нарушены не будут. Поэтому область допустимых значений здесь — вся числовая ось. В таких случаях ОДЗ не записывают, потому что оно не несет в себе полезной информации.

Как найти ОДЗ?

Если переменная (икс) в уравнении или неравенстве стоит в знаменателе, логарифме, под корнем, в тангенсе или котангенсе ОДЗ записать нужно.

Чтобы осознать важность ОДЗ, давайте сравним два решения уравнения: с ОДЗ и без ОДЗ.

Без ОДЗ: С ОДЗ:
(frac=frac<12>) (frac=frac<12>)
ОДЗ: (x+3≠0) (⇔) (x≠-3)
(x^2-x=12) (x^2-x=12)
(x^2-x-12=0) (x^2-x-12=0)
(D=(-1)^2-4·1·(-12)=49) (D=(-1)^2-4·1·(-12)=49)
(x_1=) (frac<-(-1) + sqrt<49>><2·1>) (=4) (x_2=) (frac<-(-1) + sqrt<49>><2·1>) (=4)
(x_1=) (frac<-(-1) - sqrt<49>><2·1>) (=-3) (x_2=) (frac<-(-1) - sqrt<49>><2·1>) (=-3) — не подходит под ОДЗ
Ответ: (4; -3) Ответ: (4)

Видите разницу? В первом решении у нас в ответе появился неверный, лишний корень ! Почему неверный? А давайте попробуем подставить его в исходное уравнение.

Видите, у нас получились и слева, и справа невычислимые, бессмысленные выражения (ведь на ноль делить нельзя). И то, что они одинаковы уже не играет роли, поскольку эти значения — не существуют. Таким образом, «(-3)» – неподходящий, посторонний корень, а область допустимых значений оберегает нас от таких серьезных ошибок.

Именно поэтому за первое решение вы получите двойку, а за второе – пятерку. И это не занудные придирки учителя, ведь неучет одз – не мелочь, а вполне конкретная ошибка, такая же как потерянный знак или применение не той формулы. В конце концов, итоговый ответ-то неверен!

Нахождение области допустимых значений часто приводит к необходимости решать системы неравенств или уравнений, поэтому вы должны уметь это делать хорошо.

Решение: В выражении два корня, один из которых в знаменателе. Кто не помнит ограничения, накладывающиеся в этом случае, тот смотрит таблицу . Кто помнит, записывает, что выражение под первым корнем больше или равно нулю, а под вторым — больше нуля. Понимаете, почему ограничения именно такие?

Дело за малым, нужно решить систему неравенств.
В первом неравенстве перенесем (5) вправо, второе умножим на (-1)

Запишем общий ответ для системы – это и есть допустимые значения для икса.

Область допустимых значений (ОДЗ): теория, примеры, решения

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Если имеем выражение вида 5 z — 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x — y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ — 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Решение

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .

Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Если имеется x — 1 · x — 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x — 1 · x — 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x — 1 ≥ 0 , x — 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .

Нужно избегать преобразований, которые сужают ОДЗ.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Область определения функции. Примеры.

В математике бесконечное множество функций. И у каждой — свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос — это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными. Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

В элементарном понятии функции фигурируют две величины. Независимая переменная (аргумент) x и зависимая переменная (функция) y.

Все допустимые (разрешённые) значения аргумента x и есть область определения функции. И всё.

Достаточно разобраться в этой нехитрой фразе, как всё сразу становится на свои места.

Что такое «допустимые значения»? Говоря по-простому, это те значения икса, для которых можно посчитать игрек. В принципе. Например, дана функция:

Можно посчитать игрек, скажем, для x=2? Легко! Получится y=4. А для x=1,2? Запросто. Получится y=1,6. Можно брать любое значение икса, целое, дробное, отрицательное, иррациональное — игрек всё равно посчитать можно. Точно, или приближённо, не суть важно. Нет никаких принципиальных запретов. Значит, для этой функции, все значения икса будут допустимыми. Значит, областью определения этой функции будут все действительные числа.

Разумеется, функция может быть такой замороченной, что и не посчитаешь ничего, да. Это не страшно. Нам ведь не считать надо, а область определения найти). Чуть ниже мы научимся легко и элегантно расправляться с любыми функциями. Даже самыми злыми.)

Слова «можно посчитать в принципе«, «принципиальные запреты» я не зря употребил. Вот вам другой простенький пример. Дана функция:

Идём по проторенной дорожке. Для x=1 можно посчитать игрек? Конечно. А для x=0? Опаньки. Нельзя на ноль делить. Нет такой операции в математике! На любые числа делить можно, а на ноль — нельзя. Принципиально нельзя. Вот значение x=0 и будет недопустимым для этой конкретной функции. Стало быть, областью определения этой конкретной функции будут все числа, кроме нуля.

Этот пример приведён чисто для понимания. Чтобы идею уловить. Разумеется, перебирать числа, задумчиво глядя на функцию, как-то глупо, да. ) В математике так не делают. Правильный подход к области определения функции описан далее. Но сначала — одно важное замечание, чтобы потом не путаться.

Область определения любой функции устанавливают:

1. Математика. Это законы и правила, которые всегда должны выполняться. Эти правила не зависят от нашего желания и вида задания. Они работают всегда. Область определения по этим правилам иногда называют «естественной».

2. Люди. Это дополнительные ограничения на область определения функции, которые могут быть (а могут и не быть) в любом конкретном задании и зависят исключительно от составителя задания.

Самым важным является первый пункт. С него и начнём.

Как найти область определения функции?

Итак, нам надо найти все допустимые значения икса для какой-то конкретной функции. Самый широкий набор значений, как правило — это все действительные числа. От -∞ до +∞. Перебирать все возможные числа мы не будем, да. ) В математике поступают по-другому. Работаем в два этапа.

На первом этапе ищем в функции операции, которые могут оказаться недопустимыми при каких-то значениях икса. Т.е. ищем потенциально опасные операции.

На втором этапе определяем иксы, которые не приводят к запретному действию в этих самых операциях. Это и будет область определения функции.

Если эти этапы не очень понятны, читаем дальше, на примерах всё куда яснее будет.

Что такое потенциально опасные операции? Это операции, в которых существуют принципиальные ограничения. Не пугайтесь, таких операций всего ничего и вы их прекрасно знаете). Перечисляю:

До 9-го класса включительно:

1. Деление. Нельзя делить на ноль.

2. Извлечение корня. Нельзя извлекать корни чётной степени из отрицательных чисел.

В выпускных классах и ВУЗах:

3. Логарифмы. Ограничения в логарифмах: если logab = c, то а>0, a1, b>0.

4. Тригонометрия. Ограничения в тригонометрии: значения углов, для которых тангенс и котангенс не существуют, ограничения на выражения под знаком арксинуса, арккосинуса.

Это, практически, весь набор потенциально опасных операций. Можно запомнить, правда?)

Вот и всё, что надо знать, чтобы найти область определения любой функции.

Теперь самое время применить эти знания в деле. Найдём область определения самой первой функции. Не перебором, а вполне научно):

Первый этап. Ищем в этой функции потенциально опасные операции. Деление есть? Деления нет. Корни? Корней нет. Логарифмы? Нет их. И тригонометрии тоже нет. В этой функции не может получиться никаких запретных действий. Какой бы икс мы не взяли. Этих действий в функции просто не содержится. Значит, ответ: х — любое число. Записывается ответ так:

D(f)=(-∞;+∞)

D(f) — это обозначение области определения функции.

Как видите, в этом примере второй этап вовсе не понадобился. Бывает. Хорошая функция.)

Опять ищем потенциально опасные операции. Такая операция есть. Деление. Не забыли, что дробь — это деление?) Переходим ко второму этапу.

Определяем иксы, которые не приводят к запретному действию, т.е. делению на ноль. Собственно, к делению на ноль приводит лишь одно значение икса: x=0. Следовательно, все остальные значения безопасны. Областью определения функции будут все действительные числа, кроме нуля. В краткой записи:

D(f)=(-∞;0) (0; +∞)

Запись очень похожа на запись ответа для неравенств, правда? Всё верно. И там и здесь — запись промежутков числовой оси.

Это были совсем простые примеры. Для знакомства). Переходим к более солидным заданиям.

Найти область определения функции:

Что, внушает?) Ничего не боимся и работаем по схеме.

Выполняем первый этап: осматриваем функцию, на предмет потенциально опасных операций.

Внимание! Мы ничего не решаем! Не упрощаем, не складываем дроби, не раскладываем на множители, не извлекаем корни, ни-че-го! Мы именно осматриваем функцию. Любые преобразования могут изменить область определения функции и мы получим неверный ответ.

Сразу же выполняем и второй этап: то, что найдём в процессе осмотра, будем записывать, чтобы не забыть.)

Итак, в первом слагаемом видим квадратный корень из выражения с иксом. Это потенциально опасная операция. Под корнем, при каких-то иксах, может оказаться отрицательное число. Обезопасим себя вот такой записью (второй этап):

x 2 -8x+12 0

Уловили? Квадратный корень извлекается только из положительных чисел и нуля. Всё подкоренное выражение должно быть больше, либо равно нулю. Не икс, а всё подкоренное выражение, целиком. Прошу заметить: в этой записи уже нет знака корня! А то так и норовят его написать. Корень нам не нужен, нас интересует только подкоренное выражение. Так, с корнем разобрались, идём дальше.

В этом же слагаемом есть деление на 3. Игнорируем. Тройка — не икс, нулём стать не может.)

Второе слагаемое. В нём есть деление на выражение с иксом. Знаменатель (весь знаменатель, целиком!) не может быть равен нулю. Записываем (второй этап):

х-3 0

Так, соломки подстелили, идём дальше. В третьем слагаемом опять есть деление. Записываем:

х+1 0

Ну, всё, функция кончилась.) Теперь сводим все наши записи в систему неравенств:

Система необходима, так как все наши условия должны выполняться одновременно.

Осталось решить эту систему. В ответе получится как раз область определения этой функции. Ответ будет такой:

D(f)=(-∞ ; -1) (-1; 2] [6; +∞)

Как видим, функция может быть каким угодно монстром. Но в процессе осмотра и соответствующих записей мы получаем системку неравенств, которая вполне решаема.

Так поступаем при нахождении области определения любой функции.

Не знаете, как решать системы!? Ну, это вопрос не к функциям. Имейте в виду: задание как найти область определения функции почти всегда заканчивается решением системы неравенств. Как решать квадратные неравенства можно посмотреть по ссылке. Там, кстати, решено с пояснениями именно наше квадратное неравенство. Чисто случайно. )

Последовательный осмотр и запись системы неравенств обычно особого труда не составляют. Хуже, когда потенциально опасные операции ещё и наслаиваются друг на друга. Здесь требуется пристальное внимание, чтобы чего не упустить. Например:

Найти область определения функции:

На первом этапе замечаем квадратный корень. Сразу пишем условие для всего подкоренного выражения:

Так, квадратный корень обезопасили. Но двигаться дальше ещё рано. Внутри корня есть ещё две потенциально опасные операции! Логарифм и деление. Для логарифма записываем:

Для деления записываем:

Вот теперь первое слагаемое разобрано по косточкам. Можно двигаться дальше. Для тангенса нужно записать:

Вот и всё. Сводим все наши записи в систему:

Система получилась не самая простая. Так и функция — приличного уровня. Предполагается, что студенты, которые сталкиваются с подобными функциями, решать системы неравенств умеют.) В этом уроке главное — освоить, как задачу «найти область определения функции» свести к задаче «решить систему неравенств».

Повторю алгоритм ещё раз:

1. Работаем с исходной функцией! Ничего не упрощаем и не преобразовываем! Это всё делаем (если надо будет) после нахождения области определения.

2. Внимательно осматриваем функцию на предмет потенциально опасных операций.

3. В процессе осмотра записываем в систему неравенства, которые обеспечивают допустимость опасных операций.

4. Решаем систему неравенств и записываем ответ.

Самые внимательные, наверняка, почувствовали схожесть этого процесса с нахождением области допустимых значений (ОДЗ).

Ну, что тут сказать. Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

А сейчас рассмотрим не совсем естественную область определения.)

Дополнительные ограничения на область определения функции.

Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

Что касается ограничений в задании — тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

Например, такое задание:

Найти область определения функции:

на множестве положительных чисел.

Естественную область определения этой функции мы нашли выше. Эта область:

D(f)=(-∞ ; -1) (-1; 2] [6; +∞)

А теперь учитываем дополнительные ограничения. Слова «на множестве положительных чисел» означают, что иксы могут быть только положительные. Вместо этих слов может быть задано условие «где x>0″, или «где х ∈ (0; +∞)». Если наложить это ограничение на ответ, получим новую область определения:

D(f)=(0; 2] [6; +∞)

Всё предыдущее относилось к области определения аналитически заданных функций. Это самые популярные функции. Но существуют и другие способы задания функции. Они менее привычны и могут поставить в тупик. Во избежание таких фокусов, кратенько пробежимся по D(f) для функций, заданных НЕ аналитически.

В табличном способе областью определения функций будут только те значения икса, которые даны в таблице. Других иксов для такой функции просто не существует. Разумеется, если в задании будут дополнительные ограничения на D(f), их надо будет учесть. Но основным источником информации будет таблица.

В графическом способе основной источник информации — график. Его нужно уметь читать и знать, что означают всякие точки и кружочки на рисунке.) Например, задание:

Найти область определения функции у=f(x):

Ни одной формулы нет, да. Только график. Вспоминаем, что область определения функции — это допустимые значения иксов. Вот и смотрим, для каких иксов существует нарисованная на графике функция? Наводим мышку на рисунок (или касаемся картинки на планшете) и видим, что вся кривулина укладывается между значениями -6 и 6. Левее -6 и правее +6 никакой функции нет. Найти значение функции, скажем, для х=8, невозможно. Не существует там функция.

Стало быть, говорить о D(f) можно только на промежутке от -6 до +6. Остаётся понять: входят ли концы промежутка в область определения функции, или нет? Эта информация тоже имеется на графике. Для значения х=-6 на кривой отмечена незакрашенная точка. Белая. Такие точки называют выколотыми. Это означает, что в этой точке функция не существует. Вот для х=-5,99999. функция ещё существует, а для х=-6 — уже нет. Следовательно, значение х=-6 не включается в D(f).

При значении х=+6, на графике отмечена закрашенная точка. Это значит, что при х=+6 функция существует. Этот икс необходимо включить в D(f). Вот и всё. Ответ:

В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да. ) Пример из предыдущего урока:

Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

D(f): х N

Как видите, область определения функции — не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но.

Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств. И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система.

Как найти область определения функции

Что такое область определения функции

На уроке о понятии функции мы узнали, что существует X — множество, на котором формула, которой задана функция, имеет смысл. В математическом анализе это множество часто обозначают как D (область определения функции). В свою очередь множество Y обозначают как E (область значений функции) и при этом D и E называют подмножествами R (множества действительных чисел).

Если функция задана формулой, то при отсутствии особых оговорок областью её определения считается наибольшее множество, на котором эта формула имеет смысл, то есть наибольшее множество значений аргумента, которое приводит к действительным значениям функции. Иначе говоря, множество значений аргумента, на котором «функция работает».

Для общего понимания пример пока без формулы. Функция задана в виде пар отношений:

Найти область определения это функции.

Ответ. Первый элемент пар — это переменная x. Так как в задании функции даны и вторые элементы пар — значения переменной y, то функции имеет смысл только для тех значений икса, которым соответствует определённое значения игрека. То есть берём все иксы данных пар в порядке возрастания и получаем из них область определения функции:

Та же логика работает, если функция задана формулой. Только вторые элементы в парах (то есть значения игрека) получаем, подставляя в формулу те или иные значения икса. Однако, чтобы найти область определения функции, нам не нужно перебирать все пары иксов и игреков.

Пример 0. Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Нужно всего лишь решить неравенство

так как для того, чтобы мы получили действительное значение игрека, подкоренное выражение должно быть больше или равно нулю. Получаем решение: область определения функции — все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).

На чертеже сверху — фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в «плюсовом» направлении штриховка продолжается бесконечно вместе с самой осью.

Далее на этом уроке разберём в теории и на примерах нахождение области определения всех часто встречающихся в математике функций. Но прежде — кое-какие аналогии из мира компьютеров и их пользователей.

Если вы пользуетесь компьютерными программами, которые на основании введённых данных выдают какой-то ответ, то можете заметить, что при некоторых значениях введённых данных программа выдаёт сообщение об ошибке, то есть о том, что при таких данных ответ не может быть вычислен. Такое сообщение предусмотрено авторами программы, если выражение для вычисления ответа достаточно сложно или касается какой-то узкой предметной области, или же предусмотрено авторами языка программирования, если дело касается общепринятых норм, например, что нельзя делить на нуль.

Но и в том и в другом случае ответ (значение некоторого выражения) не может быть вычислен по той причине, что выражение при некоторых значениях данных не имеет смысла.

Пример (пока не совсем математический): если программа выдаёт название месяца по номеру месяца в году, то, введя «15», вы получите сообщение об ошибке.

Чаще всего вычисляемое выражение как раз и представляет собой функцию. Поэтому такие недопустимые значения данных не входят в область определения функции. И в вычислениях от руки так же важно представлять область определения функции. Например, вы вычисляете некоторый параметр некоторого изделия по формуле, представляющей собой функцию. При некоторых значениях аргумента на входе вы на выходе не получите ничего.

Область определения постоянной

Постоянная (константа) определена при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[ .

Пример 1. Найти область определения функции y = 2 .

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f(x) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

Область определения корня n-й степени

В случае, когда функция задана формулой и n — натуральное число:

если n — чётное число, то областью определения функции является множество всех неотрицательных действительных чисел, то есть [0; + ∞[ ;

если n — нечётное число, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ .

Пример 2. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно, то есть, если — 1 ≤ x ≤ 1 . Следовательно, область определения данной функции — [- 1; 1] .

Заштрихованная область числовой прямой на чертеже сверху — это область определения данной функции.

Область определения степенной функции

Область определения степенной функции с целым показателем степени

В случае, когда функция задана формулой :

если a — положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;

если a — отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 3. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы — так же целого числа. Следовательно, область определения данной функции — вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если — положительное, то областью определения функции является множество [0; + ∞[ ;

если — отрицательное, то областью определения функции является множество ]0; + ∞[ .

Пример 4. Найти область определения функции .

Решение. Оба слагаемых в выражении функции — степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции — множество [0; + ∞[ .

На чертеже сверху заштрихована часть числовой прямой от нуля (включительно) и больше, причём штриховка продолжается вместе с самой прямой до плюс бесконечности.

Пример 5. Найти область определения функции .

Решение. Дробный показатель степени данной степенной функции — отрицательный. Поэтому решим строгое неравенство, когда квадратный трёхчлен в скобках строго больше нуля::

.

Дикриминант получился отрицательный. Следовательно сопряжённое неравенству квадратное уравнение не имеет корней. А это значит, что квадратный трёхчлен ни при каких значениях «икса» не равен нулю. Таким образом, область определения данной функции — вся числовая ось, или, что то же самое — множество R действительных чисел, или, что то же самое — ]- ∞; + ∞[ .

Область определения показательной и логарифмической функции

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ .

Найти область определения функции самостоятельно, а затем посмотреть решение

Пример 6. Найти область определения функции .

Пример 7. Найти область определения функции .

Область определения тригонометрических функций

Область определения функции y = cos(x) — так же множество R действительных чисел.

Область определения функции y = tg(x) — множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x) — множество R действительных чисел, кроме чисел .

Пример 8. Найти область определения функции .

Решение. Внешняя функция — десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь — синус «икса». Поворачивая воображаемый циркуль по окружности, видим, что условие sin x > 0 нарушается при «иксе» равным нулю, «пи», два, умноженном на «пи» и вообще равным произведению числа «пи» и любого чётного или нечётного целого числа.

Таким образом, область определения данной функции задаётся выражением

,

где k — целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x) — множество [-1; 1] .

Область определения функции y = arccos(x) — так же множество [-1; 1] .

Область определения функции y = arctg(x) — множество R действительных чисел.

Область определения функции y = arcctg(x) — так же множество R действительных чисел.

Пример 9. Найти область определения функции .

Решение. Решим неравенство:

Таким образом, получаем область определения данной функции — отрезок [- 4; 4] .

Пример 10. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение второго неравенства:

Таким образом, получаем область определения данной функции — отрезок [0; 1] .

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.

Пример 11. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби, находим область определения данной функции — множество ]- ∞; — 2[ ∪ ]- 2 ;+ ∞[ .

Пример 12. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[ .

Пример 13. Найти область определения функции .

Решение. Область определения первого слагаемого — данной функции — множество R действительных чисел, второго слагаемого — все действительные числа, кроме -2 и 2 (получили, решая равенство нулю знаменателя, как в предыдущем примере). В этом случае область определения функции должна удовлетворять условиями определения обоих слагаемых. Следовательно, область определения данной функции — все x , кроме -2 и 2.

Пример 14. Найти область определения функции .

Решение. Решим уравнение:

Уравнение не имеет действительных корней. Но функция определена только на действительных числах. Таким образом, получаем область определения данной функции — вся числовая прямая или, что то же самое — множество R действительных чисел или, что то же самое — ]- ∞; + ∞[ .

То есть, какое бы число мы не подставляли вместо «икса», знаменатель никогда не будет равен нулю.

Пример 15. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 0[ ∪ ]0 ; 1[ ∪ ]1 ;+ ∞[ .

Пример 16. Найти область определения функции .

Решение. Кроме того, что знаменатель не может быть равным нулю, ещё и выражение под корнем не может быть отрицательным. Сначала решим уравнение:

График квадратичной функции под корнем представляет собой параболу, ветви которой направлены вверх. Как следует из решения квадратного уравнения, парабола пересекает ось Ox в точках 1 и 2. Между этими точками линия параболы находится ниже оси Ox, следовательно значения квадратичной функции между этими точками отрицательное. Таким образом, исходная функция не определена на отрезке [1; 2] .

Найти область определения функции самостоятельно, а затем посмотреть решение

Пример 17. Найти область определения функции .

Пример 18. Найти область определения функции .

Область определения линейной функции

Если функция задана формулой вида y = kx + b , то область определения функции — множество R действительных чисел.

Статья написана по материалам сайтов: zaochnik.com, helpmatan.ru, function-x.ru.

»

Это интересно:  Ипотека для многодетной семьи в 2019 году
Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock detector
(begin5-2xgeq0\14+5x-x^ <2>> 0end)