В какой молекуле наиболее прочная химическая связь

Дипольные взаимодействия в молекулярном кристалле.

Образование водородной связи между молекулами воды.

Прочность химической связи опре­деляется энергией связи, т. е. энергией, которая необходима для того, чтобы разорвать связь и развести атомы на бесконечное расстояние. Энергия свя­зи изменяется в очень широких пре­делах. Наиболее прочная связь — в мо­лекулах N2 (945,3 кДж/моль) и СО (1070,3 кДж/моль). Самая сливая ковалентная химическая связь также образуется между атомами азота — в окси­де N2O3 (40,6 кДж/моль), а самая слабая вандерваальсова связь — меж­ду атомами гелия (8•10 -6 кДж/моль). Наиболее прочными связями являют­ся ковалентные и ионные (энергия связи порядка сотен килоджоулей на моль), затем идут водородные (десят­ки килоджоулей на моль), самые же слабые — вандерваальсовы.

Полярность связи показывает, насколько электронная плотность смещена к одному из атомов. Способ­ность атома смещать к себе электрон­ную плотность химической связи называют электроотрицателъностью. Самые электроотрицательные элемен­ты — активные неметаллы: F, О, N, Cl; самые электроположительные — ще­лочные металлы. Чем больше раз­ность электроотрицательностей ато­мов, участвующих в химической связи, тем более полярна эта связь. Пре­дельный случай полярной связи — ионная связь.

Порядок (или, иначе, кратность) связи в различных теориях химиче­ской связи определяют по-разному. В теории электронных пар Льюиса порядок связи — это число электрон­ных пар, осуществляющих химиче­скую связь. Порядок может быть це лым или дробным. В теории МО по­рядок связи для двухатомных молекул определяют как половину разности между числом электронов на связыва­ющих и на разрыхляющих орбиталях. Так, порядок связи в молекуле О2 ра­вен (6-2)/2 = 2, в молекулярном ионе O — 2 порядок равен 2,5, а в ионе О + 2 — 1,5. Дробный порядок характерен так­же для многоцентровых связей.

Чем выше порядок, тем большее число электронов обеспечивает связь, и тем труднее её разорвать. Так, энергия тройной связи НС º СН (962 кДж/моль) намного больше энергии двойной связи Н2С=СН2 (712 кДж/моль) и значительно пре­вышает энергию одинарной связи Н3С-СН3 (369 кДж/моль).

Химическими связями обусловле­ны строение, реакционная способ­ность и химические свойства всех веществ. В самом деле, любая хими­ческая реакция сводится к разрыву старых и образованию новых хими­ческих связей. Склонность к разрыву зависит от энергии связи, реакцион­ная способность молекулы — от рас­пределения положительных и отри­цательных зарядов в ней, которое определяется полярностью связей. Длины связей задают геометрическую форму молекул и формируют пространственные эффекты в неко­торых химических реакциях. Таким образом, точное описание свойств химических связей является важней­шей задачей химии.

Все современные теории химиче­ской связи базируются на квантовой теории, основы которой были заложе­ны ещё в 20-х гг. XX в. Уже тогда поя­вились уравнения, описывающие дви­жение ядер и электронов в молекуле. Главную проблему теперь составляют сами вычисления, поскольку квантово-химические уравнения очень сложны. Даже для простейшей молекулы вол­новая функция зависит от девяти про­странственных переменных.

Тем не менее современные мето­ды квантовой химии достигли высо­кого уровня развития и позволяют описывать строение и свойства весь­ма сложных молекул. Прогресс в об­ласти компьютерных технологий и создания вычислительных алгорит­мов, а также большие успехи в разра­ботке приближённых методов реше­ния квантово-химических уравнений позволяют надеяться на теоретиче­ское предсказание и открытие новых интересных молекул с необычными химическими связями.

Сеть водородных связей в воле. Красные кружки — атомы кислорода, белые — атомы водорода, синие линии обозначают водородные связи.

3 Химическая связь

Химическая связь – это взаимодействие двух атомов, осуществляемое в процессе перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая восьми– или двухэлектронная конфигурация ближайшего благородного газа (октет или дублет) за счет образования ионов (В.Коссель) или образования общих электронных пар (Г.Льюис). Общая энергия системы при этом понижается.

3.1 Основные характеристики химической связи

3.1.1 Энергия связи – это энергия, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества, или выигрыш в энергии при образовании соединения из отдельных атомов (Eсв). Чем больше энергия химической связи, тем прочнее сама связь, тем устойчивее молекула.

Это интересно:  Как начисляется субсидия на оплату коммунальных услуг

Обычно энергию связи измеряют в килоджоулях на моль, кДж/моль.

кДж/моль. Для многоатомных соединений с однотипными связями за энергию связи принимается среднее ее значение, рассчитанное делением энергии образования соединения из атомов на число связей. Так, на разрыв связи H–H затрачивается 432,1 кДж/∙моль, а на атомизацию метана CH4 – 1648 кДж/∙моль, в этом случае EC–H = 1648: 4 = 412 кДж.

3.1.2 Длина связи lсв. При образовании химической связи происходит перекрывание электронных облаков двух атомов и расстояние между ядрами атомов становится меньше суммы расстояний от ядер до внешних зон наибольшей электронной плотности в атомах.

3.1.3 Полярность связи характеризуется ионной составляющей, то есть смещением электронной пары к более электроотрицательному атому, в результате чего образуется диполь. Диполь – система из двух равных, но противоположных по знаку зарядов, находящихся на единичном расстоянии друг от друга. Полярность связи может быть выражена через ее дипольный момент μ, равный произведению элементарного заряда на длину диполя μ=e ∙ l. Дипольный момент измеряется в кулонах на метр, Кл∙м, или в дебаях, D.

1D = 0,333∙10 –29 Кл∙м. Он является величиной векторной и направлен по оси диполя от отрицательного заряда к положительному.

Полярность молекулы в целом определяется разностью электроотрицательностей атомов, образующих двухцентровую связь, геометрией молекулы, а так же наличием неподеленных электронных пар, так как часть электронной плотности в молекуле может быть локализована не в направлении связей. Она выражается через ее дипольный момент, который равен векторной сумме всех дипольных моментов связей молекулы.

Следует различать дипольные моменты (полярность) связи и молекулы в целом. Например, для линейной молекулы CO2 μ = 0 (хотя каждая из связей полярна, а молекула в целом неполярна, так как молекула О=С=О линейна, и дипольные моменты связей С=О компенсируют друг друга), но для Н2О μ ≠ 0. Наличие дипольного момента в молекуле воды означает, что она нелинейна, т. е. связи О—Н расположены под углом, не равным 180°.

3.1.4 Пространственное строение молекул – это форма и расположение в пространстве электронных облаков с учётом природы химической связи.

В соединениях, содержащих более двух атомов, важной характеристикой является валентный угол, образуемый химическими связями в молекуле и отражающий ее геометрию.

3.1.5 Порядок связи (кратность связи) – это число обобществленных поделенных пар между двумя связанными атомами. Чем выше порядок связи, тем прочнее связаны между собой атомы и тем короче сама связь. Порядок связи выше трех не встречается. Например, порядок связи в молекулах H2, O2 и N2 равен 1, 2 и 3 соответственно, поскольку связь в этих случаях образуется за счёт перекрывания одной, двух и трех пар электронных облаков.

3.1.6 Насыщаемость связи – способность атома давать определённое количество химических связей. Некоторые виды химического взаимодействия не обладают насыщаемостью, то есть частицы могут образовывать различное число связей со своими соседями. Такое свойство присуще ионной связи.

3.1.7 Способ перекрывания электронных облаков. По способу перекрывания электронных облаков связь делят на σ — связь и π – связь (рисунок 4).

Рисунок 4 – Схема σ — и π — связи

σ – связь образуется за счёт перекрывания электронных облаков по линии, соединяющей центры взаимо–действующих атомов. Она может осуществляться, например, между двумя s– облаками, между двумя p– облаками, между s– и p– облаками или между s– и d– облаками. π – связь образуется за счёт перекрывания электронных облаков по обе стороны от линии, соединяющей центры взаимодействующих атомов (за счёт бокового перекрывания электронных облаков). Она образуется в основном при перекрывании р– орбиталей. σ – связь является более прочной, чем π – связь, поскольку обеспечивает более полное перекрывание и поэтому на её разрыв требуется затратить больше энергии.

Теории, объясняющие химическую связь

В настоящее время используется две теории: метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Это интересно:  Заработная плата должна выплачиваться

3.2.1 Метод валентных связей иначе называют теорией локализованных электронных пар, поскольку в основе метода лежит предположение, что при образовании молекулы атомы сохраняют свои атомные орбитали, но зато образуется повышенная электронная плотность (общая электронная пара), которая принадлежит обоим атомам. В отличие от ММО, в котором простейшая химическая связь может быть как двух–, так и многоцентровой, в МВС она всегда двухэлектронная и обязательно двухцентровая.

Отметим, что электроны в соответствии с принципом Паули должны иметь противоположно направленные спины, то есть в МВС все спины спарены, и все молекулы должны быть диамагнитны (поскольку магнитные свойства обуславливаются наличием свободных электронов). Следовательно, МВС принципиально не может объяснить магнитные свойства молекул.

3.2.2 Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. То есть, при образовании молекулы атомные орбитали как таковые исчезают, а вместо них возникают новые молекулярные орбитали. Причём число молекулярных орбиталей равно сумме исходных атомных, но часть молекулярных орбиталей по энергии ниже (связывающие МО), а часть по энергии выше (разрыхляющие МО), чем исходные атомные.

Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО. Поскольку ядра во взаимодействующих атомах водорода одинаковы, то и вклад атомных орбиталей будет одинаковым. А так как в молекуле водорода взаимодействие возможно только по оси молекулы, то каждая из MO может быть переобозначена как σ св и σ* и названа соответственно связывающей (σ св ) и разрыхляющей (σ*) молекулярными орбиталями.

Переход двух электронов на МО σ св способствует понижению энергии системы; этот энергетический выигрыш равен энергии связи между атомами в молекуле водорода H–H. То есть заселение электронами связывающей МО σ св стабилизирует систему, а заселение разрыхляющих – дестабилизирует ее.

Согласно методу МО порядок (кратность) связи n определяется полуразностью числа связывающих Nсв и разрыхляющих Nраз электронов

Чем больше кратность связи, тем более прочная связь в молекуле. При нулевой кратности связи молекула не образуется.

Рассмотрим некоторые случаи строения молекул по ММО.

Молекула Н2 образуется из двух атомов Н, атомная валентная зона которого представлена одним электроном на 1s– подуровне. При чём необходимо, чтобы электроны имели противоположные спины. Изобразим строение молекулы Н2 на следующей энергетической диаграмме (рисунок 5). При заполнении этой диаграммы следует учитывать принципы заполнения электронных орбиталей (принцип Паули, принцип Гунда, принцип минимальной энергии).

E

Задания 4. Химическая связь, состав и строение веществ.

Из предложенного перечня выберите два соединения, в которых присутствует ионная химическая связь.
1) Ca(ClO2)2
2) HClO3
3) NH4Cl
4) HClO4
5) Cl2O7
Запишите в поле ответа номера выбранных соединений.

Ответ: 13

Определить наличие ионного типа связи в соединении в подавляющем большинстве случаев можно по тому, что в состав его структурных единиц одновременно входят атомы типичного металла и атомы неметалла.

По этому признаку мы устанавливаем, что ионная связь имеется в соединении под номером 1 — Ca(ClO2)2, т.к. в его формуле можно увидеть атомы типичного металла кальция и атомы неметаллов — кислорода и хлора.

Однако, больше соединений, содержащих одновременно атомы металла и неметалла, в указанном списке нет.

Помимо указанного выше признака, о наличии ионной связи в соединении можно говорить, если в составе его структурной единицы содержится катион аммония (NH4 + ) или его органические аналоги — катионы алкиламмония RNH3 + , диалкиламония R2NH2 + , триалкиламмония R3NH + или тетраалкиламмония R4N + , где R — некоторый углеводородный радикал. Например, ионный тип связи имеет место в соединении (CH3)4NCl между катионом (CH3)4 + и хлорид-ионом Cl − .

Среди указанных в задании соединений есть хлорид аммония, в нем ионная связь реализуется между катионом аммония NH4 + и хлорид-ионом Cl − .

Из предложенного перечня выберите два соединения, в которых тип химической связи такой же, как в молекуле фтора.
1) кислород
2) оксид азота (II)
3) бромоводород
4) иодид натрия
5) алмаз
Запишите в поле ответа номера выбранных соединений.

Это интересно:  Наезд на стоп линию штраф

Ответ: 15

Молекула фтора (F2) состоит из двух атомов одного химического элемента неметалла, поэтому химическая связь в данной молекуле ковалентная неполярная.
Ковалентная неполярная связь может быть реализована только между атомами одного и того же химического элемента неметалла.
Из предложенных вариантов ковалентный неполярный тип связи имеют только кислород и алмаз. Молекула кислорода является двухатомной, состоит из атомов одного химического элемента неметалла. Алмаз имеет атомное строение и в его структуре каждый атом углерода, являющегося неметаллом, связан с 4-мя другими атомами углерода.

Оксид азота (II) — вещество состоящее из молекул, образованных атомами двух разных неметаллов. Поскольку электроотрицательности разных атомов всегда различны, общая электронная пара в молекуле смещена к более электроотрицательному элементу, в данном случае к кислороду. Таким образом, связь в молекуле NO является ковалентной полярной.

Бромоводород также состоит из двухатомных молекул, состоящих из атомов водорода и брома. Общая электронная пара, образующая связь H-Br, смещена к более электроотрицательному атому брома. Химическая связь в молекуле HBr также является ковалентной полярной.

Иодид натрия — вещество ионного строения, образованное катионом металла и иодид-анионом. Связь в молекуле NaI образована за счет перехода электрона с 3s-орбитали атома натрия (атом натрия превращается в катион) на недозаполненную 5p-орбиталь атома иода (атом иода превращается в анион). Такая химическая связь называется ионной.

В какой молекуле наиболее прочная химическая связь

Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая, водородная. Способы образования ковалентной связи. Характеристики ковалентной связи: длина и энергия связи. Образование ионной связи.

1. В аммиаке и хлориде бария химическая связь соответственно

1) ионная и ковалентная полярная

2) ковалентная полярная и ионная

3) ковалентная неполярная и металлическая

4) ковалентная неполярная и ионная

2. Вещества только с ионной связью приведены в ряду:

3. Соединение с ионной связью образуется при взаимодействии

4. В каком ряду все вещества имеют ковалентную полярную связь?

5. В каком ряду записаны формулы веществ только с ковалентной полярной
связью?

6. Ковалентная неполярная связь характерна для

7. Веществом с ковалентной полярной связью является

8. Веществом с ковалентной связью является

1) СаС12 2) MgS 3) H2S 4) NaBr

9. Вещество с ковалентной неполярной связью имеет формулу

10. Веществами с неполярной ковалентной связью являются

2) водород и хлор

11. Между атомами с одинаковой относительной электроотрицательностью образуется химическая связь

2) ковалентная полярная

3) ковалентная неполярная

12. Ковалентная полярная связь характерна для

13. Химический элемент, в атоме которого электроны по слоям распределены так: 2, 8, 8, 2 образует с водородом химическую связь

2) ковалентную неполярную

14. В молекуле какого вещества длина связи между атомами углерода наибольшая?

1> ацетилена 2) этана 3) этена 4) бензола

15. Тремя общими электронными парами образована ковалентная связь в молекуле

16. Водородные связи образуются между молекулами

1) диметилового эфира

17. Полярность связи наиболее выражена в молекуле

1) HI 2) НС1 3) HF 4) НВг

18. Веществами с неполярной ковалентной связью являются

2) водород и хлор

19. Водородная связь не характерна для вещества

20. Ковалентная полярная связь характерна для каждого из двух веществ, формулы которых

21. Наименее прочная химическая связь в молекуле

1) фтора 2) хлора 3> брома 4> иода

22. В молекуле какого вещества длина химической связи наибольшая?

1) фтора 2) хлора 3) брома 4) иода

23. Ковалентные связи имеет каждое из веществ, указанных в ряду:

24. Ковалентную связь имеет каждое из веществ, указанных в ряду:

25. Ковалентную связь имеет каждое из веществ, указанных в ряду:

26. Ковалентные связи имеет каждое из веществ, указанных в ряду:

27. Полярность связи наиболее выражена в молекулах

28. В молекуле какого вещества химические связи наиболее прочные?

29. Среди веществ NH4Cl, CsCl, NaNO3, PH3, HNO3 — число соединений с ионной связью равно

Статья написана по материалам сайтов: studfiles.net, scienceforyou.ru, lib.repetitors.eu.

«

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий